Sunday, May 24, 2009

Medical Treatment of Hepatocellular Carcinoma ( HCC )





Chemotherapy Systemic (entire body) chemotherapy

The most commonly used systemic chemotherapeutic agents are doxorubicin (Adriamycin) and 5-fluorouracil (5 FU). These drugs are used together or in combination with new experimental agents. These drugs are quite toxic and results have been disappointing. A few studies suggest some benefit with tamoxifen (Nolvadex) but just as many studies show no advantage. Octreotide (Sandostatin) given as an injection was shown in one study to slow down the progression of large liver cancer tumors, but so far, no other studies have confirmed this benefit.

Hepatic arterial infusion of chemotherapy

The normal liver gets its blood supply from two sources; the portal vein (about 70%) and the hepatic artery (30%). However, liver cancer gets its blood exclusively from the hepatic artery. Making use of this fact, investigators have delivered chemotherapy agents selectively through the hepatic artery directly to the tumor. The theoretical advantage is that higher concentrations of the agents can be delivered to the tumors without subjecting the patients to the systemic toxicity of the agents.

In reality, however, much of the chemotherapeutic agents does end up in the rest of the body. Therefore, selective intra-arterial chemotherapy can cause the usual systemic (body-wide) side effects. In addition, this treatment can result in some regional side effects, such as inflammation of the gallbladder (cholecystitis), intestinal and stomach ulcers, and inflammation of the pancreas (pancreatitis). Liver cancer patients with advanced cirrhosis may develop liver failure after this treatment. Well then, what is the benefit of intra-arterial chemotherapy? The bottom line is that fewer than 50% of patients will experience a reduction in tumor size.

An interventional radiologist (one who does therapeutic procedures) usually carries out this procedure. The radiologist must work closely with an oncologist (cancer specialist), who determines the amount of chemotherapy that the patient receives at each session. Some patients may undergo repeat sessions at 6 to 12 week intervals. This procedure is done with the help of fluoroscopy (type of x-ray) imaging. A catheter (long, narrow tube) is inserted into the femoral artery in the groin and is threaded into the aorta (the main artery of the body). From the aorta, the catheter is advanced into the hepatic artery. Once the branches of the hepatic artery that feed the liver cancer are identified, the chemotherapy is infused. The whole procedure takes one to two hours, and then the catheter is removed.

The patient generally stays in the hospital overnight for observation. A sandbag is placed over the groin to compress the area where the catheter was inserted into the femoral artery. The nurses periodically check for signs of bleeding from the femoral artery puncture. They also check for the pulse in the foot on the side of the catheter insertion to be sure that the femoral artery is not blocked as a result of the procedure. (Blockage would be signaled by the absence of a pulse.)

Generally, the liver tests increase (get worse) during the two to three days after the procedure. This worsening of the liver tests is actually due to death of the tumor (and some non-tumor) cells. The patient may experience some post-procedure abdominal pain and low-grade fever. However, severe abdominal pain and vomiting suggest that a more serious complication has developed. Imaging studies of the liver are repeated in six to 12 weeks to assess the size of the tumor in response to the treatment. For more, please read the Chemotherapy article.

Chemoembolization (trans-arterial chemoembolization or TACE)

This technique takes advantage of the fact that liver cancer is a very vascular (contains many blood vessels) tumor and gets its blood supply exclusively from the branches of the hepatic artery. This procedure is similar to intra-arterial infusion of chemotherapy. But in TACE, there is the additional step of blocking (embolizing) the small blood vessels with different types of compounds, such as gelfoam or even small metal coils. Thus, TACE has the advantages of exposing the tumor to high concentrations of chemotherapy and confining the agents locally since they are not carried away by the blood stream. At the same time, this technique deprives the tumor of its needed blood supply, which can result in the damage or death of the tumor cells.

The type and frequency of complications of TACE and intra-arterial chemotherapy are similar. The potential disadvantage of TACE is that blocking the feeding vessels to the tumor(s) may make future attempts at intra-arterial infusions impossible. Moreover, so far, there are no head-to-head studies directly comparing the effectiveness of intra-arterial infusion versus chemoembolization. In Japan, the chemotherapeutic agents are mixed with lipiodol. The idea is that since the tumor cells preferentially take up lipiodol, they would likewise take up the chemotherapy. This Japanese technique has not yet been validated in head-to-head comparisons with conventional TACE.

What are the benefits of TACE? In one large study involving several institutions in Italy, chemoembolization did not seem to be beneficial. Patients who did not undergo TACE lived as long as patients who received TACE, even though the tumors were more likely to shrink in size in patients who were treated. Does this mean that TACE or intra-arterial chemotherapy does not work? Maybe, maybe not.

Studies in Japan have shown that TACE can downstage liver cancer. In other words, the tumors shrank enough to lower (improve) the stage of the cancer. From the practical point of view, shrinking the tumor creates the option for surgery in some of these patients. Otherwise, these patients had tumors that were not operable (eligible for operation) because of the initial large size of their tumors. More importantly, these same studies showed an improvement in survival in patients whose tumors became considerably smaller. In the U.S., trials are underway to see whether doing TACE before liver transplantation increases patient survival as compared to liver transplantation without TACE.

It is safe to say that TACE or intra-arterial chemoinfusion are palliative treatment options for liver cancer. This means that these procedures can provide relief or make the disease less severe. However, they are not curative (do not result in a cure). Fewer than 50% of patients will have some shrinkage in tumor size. Further, they can be used only in patients with relatively preserved liver function. The reason for this is that these procedures, as mentioned previously, can lead to liver failure in individuals with poor liver function.

Ablation techniques

Radiofrequency ablation (RFA) therapy

In the U.S., RFA therapy has become the ablation (tissue destruction) therapy of choice among surgeons. The surgeon can perform this procedure laparoscopically (through small holes in the abdomen) or during open exploration of the abdomen. In some instances, the procedure can be done without opening the abdomen by just using ultrasound for visual guidance.

In RFA, heat is generated locally by a high frequency, alternating current that flows from the electrodes. A probe is inserted into the center of the tumor and the non-insulated electrodes, which are shaped like prongs, are projected into the tumor. The local heat that is generated melts the tissue (coagulative necrosis) that is adjacent to the probe. The probe is left in place for about 10 to 15 minutes. The whole procedure is monitored visually by ultrasound scanning. The ideal size of an liver cancer tumor for RFA is less than 3 cm. Larger tumors may require more than one session. This treatment should be viewed as palliative (providing some relief), not curative.

Percutaneous ethanol (alcohol) injection

In this technique, pure alcohol is injected into the tumor through a very thin needle with the help of ultrasound or CT visual guidance. Alcohol induces tumor destruction by drawing water out of tumor cells (dehydrating them) and thereby altering (denaturing) the structure of cellular proteins. It may take up to five or six sessions of injections to completely destroy the cancer. The ideal patient for alcohol injection has fewer than three liver cancer tumors, each of which is:

* well defined (distinct margins)
* less than 3 cm in diameter
* surrounded by a shell consisting of scar tissue (fibrous encapsulation)
* not near the surface of the liver

Additionally, patients with liver cancer undergoing alcohol injection should have no signs of chronic liver failure, such as ascites or jaundice. (Patients with liver failure would not be able to tolerate the alcohol injections.)

The most common side effect of alcohol injection is leakage of alcohol onto the surface of the liver and into the abdominal cavity, thereby causing pain and fever. It is important that the location of the tumor relative to the adjacent blood vessels and bile ducts is clearly identified. The reason for needing to locate these structures is to avoid injuring them during the procedure and causing bleeding, bile duct inflammation, or bile leakage.

Proton beam therapy

This technique is able to deliver high doses of radiation to a defined local area. Proton beam therapy is used in the treatment of other solid tumors as well. There are not much data yet regarding the efficacy of this treatment in liver cancer. The ideal patient is one with only asmall(<5 style="font-size:130%;">Surgery

Surgical options are limited to individuals whose tumors are less than 5 cm and confined to the liver, with no invasion of the blood vessels.

Diagnosis of Liver Cancer

Blood tests

Liver cancer is not diagnosed by routine blood tests, including a standard panel of liver tests. This is why the diagnosis of liver cancer depends so much on the vigilance of the physician screening with a tumor marker (alpha-fetoprotein) in the blood and radiological imaging studies. Since most patients with liver cancer have associated liver disease (cirrhosis), their liver blood tests may not be normal to begin with. If these blood tests become abnormal or worsen due to liver cancer, this usually signifies extensive cancerous involvement of the liver. At that time, any medical or surgical treatment would be too late.
Sometimes, however, other abnormal blood tests can indicate the presence of liver cancer. Remember that each cell type in the body contains the full complement of genetic information. What differentiates one cell type from another is the particular set of genes that are turned on or off in that cell. When cells become cancerous, certain of the cell's genes that were turned off may become turned on. Thus, in liver cancer, the cancerous liver cells may take on the characteristics of other types of cells. For example, liver cancer cells sometimes can produce hormones that are ordinarily produced in other body systems. These hormones then can cause certain abnormal blood tests, such as a high red blood count (erythrocytosis), low blood sugar (hypoglycemia) and high blood calcium (hypercalcemia).
Another abnormal blood test, high serum cholesterol (hypercholesterolemia), is seen in up to 10% of patients from Africa with liver cancer. The high cholesterol occurs because the liver cancer cells are not able to turn off (inhibit) their production of cholesterol. (Normal cells are able to turn off their production of cholesterol.)
There is no reliable or accurate screening blood test for liver cancer. The most widely used biochemical blood test is alpha-fetoprotein (AFP), which is a protein normally made by the immature liver cells in the fetus. At birth, infants have relatively high levels of AFP, which fall to normal adult levels by the first year of life. Also, pregnant women carrying babies with neural tube defects may have high levels of AFP. (A neural tube defect is an abnormal fetal brain or spinal cord that is caused by folic acid deficiency during pregnancy.)
In adults, high blood levels (over 500 nanograms/milliliter) of AFP are seen in only three situations:
• Liver cancer
• Germ cell tumors (cancer of the testes and ovaries)
• Metastatic cancer in the liver (originating in other organs)
Several assays (tests) for measuring AFP are available. Generally, normal levels of AFP are below 10 ng/ml. Moderate levels of AFP (even almost up to 500 ng/ml) can be seen in patients with chronic hepatitis. Moreover, many patients with various types of acute and chronic liver diseases without documentable liver cancer can have mild or even moderate elevations of AFP.
The sensitivity of AFP for liver cancer is about 60%. In other words, an elevated AFP blood test is seen in about 60% of liver cancer patients. That leaves 40% of patients with liver cancer who have normal AFP levels. Therefore, a normal AFP does not exclude liver cancer. Also, as noted above, an abnormal AFP does not mean that a patient has liver cancer. It is important to note, however, that patients with cirrhosis and an abnormal AFP, despite having no documentable liver cancer, still are at very high risk of developing liver cancer. Thus, any patient with cirrhosis and an elevated AFP, particularly with steadily rising blood levels, will either most likely develop liver cancer or actually already have an undiscovered liver cancer.
An AFP greater than 500 ng/ml is very suggestive of liver cancer. In fact, the blood level of AFP loosely relates to (correlates with) the size of the liver cancer. Finally, in patients with liver cancer and abnormal AFP levels, the AFP may be used as a marker of response to treatment. For example, an elevated AFP is expected to fall to normal in a patient whose liver cancer is successfully removed surgically (resected).
There are a number of other liver cancer tumor markers that currently are research tools and not generally available. These include des-gamma-carboxyprothrombin (DCP), a variant of the gamma-glutamyltransferase enzymes, and variants of other enzymes (for example, alpha-L-fucosidase), which are produced by normal liver cells. (Enzymes are proteins that speed up biochemical reactions.) Potentially, these blood tests, used in conjunction with AFP, could be very helpful in diagnosing more cases of liver cancer than with AFP alone.

Imaging studies

Imaging studies play a very important role in the diagnosis of liver cancer. A good study can provide information as to the size of the tumor, the number of tumors, and whether the tumor has involved major blood vessels locally or spread outside of the liver. There are several types of studies, each having its merits and disadvantages. In practice, several studies combined often complement each other. On the other hand, a plain X-ray is not very helpful, and therefore, is not routinely done in the diagnostic work-up of liver cancer. Further, there is no practical role for nuclear medicine scans of the liver and spleen in the work-up for liver cancer. Such scans are not very sensitive and they provide no additional information beyond that provided by the other (ultrasound, CT, and MRI) scans.
Ultrasound examination is usually the first study ordered if liver cancer is suspected in a patient. The accuracy of an ultrasound depends very much on the technician and radiologist who perform the study (operator dependent). Studies from Japan and Taiwan report that ultrasound is the most sensitive imaging study for diagnosing and characterizing liver cancer. But you should know that in these studies, highly experienced individuals performed the scans and spent up to one hour scanning each patient suspected of having liver cancer. An ultrasound has the advantages of not requiring intravenous contrast material and not involving radiation. Moreover, the price of an ultrasound is quite low as compared to the other types of scans.
Computerized axial tomography (CT scan) is a very common study used in the U.S. for the work-up of tumors in the liver. The ideal CT study is a multi-phase, spiral CT scan using oral and intravenous contrast material. Pictures are taken in three phases:
• Without intravenous contrast
• With intravenous contrast (enhanced imaging) that highlights the arterial system (arterial phase)
• When the contrast is in the venous phase
The pictures are taken at very frequent intervals (thin slices) as the body is moved through the CT scanner. Many radiologists use a specific protocol that determines how the contrast is infused in relation to how the pictures are taken. Therefore, CT is much less operator-dependent than is ultrasound. However, CT is considerably more expensive. Furthermore, CT requires the use of contrast material, which has the potential risks of an allergic reaction and adverse effects on kidney function.
There are several variations to CT scanning. For example, in a CT angiogram, which is a highly invasive (enters a part of the body) study, intravenous contrast is selectively infused through the hepatic artery (artery to the liver). The purpose is to highlight the vessels for better visualization of them by the CT scan. Also, in Japan, an oily contrast material called lipiodol, which is selectively taken up by liver cancer cells, has been used with CT. The purpose of this approach is to improve the sensitivity of the scan. That is to say, the goal is to increase the percentage of abnormal CT scans in patients who have liver cancer.
Magnetic resonance imaging (MRI) can provide very clear images of the body. Its advantage over CT is that MRI can provide sectional views of the body in different planes. The technology has evolved to the point that the newer MRIs can actually reconstruct images of the biliary tree (bile ducts and gallbladder) and of the arteries and veins of the liver. (The biliary tree transports bile from the liver to the duodenum, the first part of the intestine.) MRI studies can be made even more sensitive by using intravenous contrast material (for example, gadolinium).
MRI scans are very expensive and there is tremendous variability in the quality of the images. The quality depends on the age of the machine and the ability of the patients to hold their breath for up to 15 to 20 seconds at a time. Furthermore, many patients, because of claustrophobia, cannot tolerate being in the MRI scanner. However, the current open MRI scanners generally do not provide as high quality images as the closed scanners do.
Advances in ultrasound, CT, and MRI technology have almost eliminated the need for angiography. An angiography procedure involves inserting a catheter into the femoral artery (in the groin) through the aorta, and into the hepatic artery, the artery that supplies blood to the liver. Contrast material is then injected, and X-ray pictures of the arterial blood supply to the liver are taken. An angiogram of liver cancer shows a characteristic blush that is produced by newly formed abnormal small arteries that feed the tumor (neovascularization).
What, then, is the best imaging study for diagnosing liver cancer? There is no simple answer. Many factors need to be taken into consideration. For example, is the diagnosis of liver cancer known or is the scan being done for screening? What is the expertise of doctors in the patient's area? What is the quality of the different scanners at a particular facility? Are there economic considerations? Does the patient have any other conditions that need to be considered, such as claustrophobia or kidney impairment? Does the patient have any hardware, for example, a pacemaker or metal prosthetic device? (The hardware would make doing an MRI impossible.)
If you live in Japan or Taiwan and have access to a radiologist or hepatologist with expertise in ultrasound, then it may be as good as a CT scan. Ultrasound is also the most practical (easier and cheaper) for regular screening (surveillance). In North America, a multi-phase spiral CT scan is probably the most accurate type of scan. However, for patients with impaired renal function or who have access to a state-of-the-art MRI scanner, the MRI may be the diagnostic scan of choice. Finally, keep in mind that the technology of ultrasound, CT, and MRI is ever evolving with the development of better machines and the use of special contrast materials to further characterize the tumors.

Liver biopsy or aspiration

In theory, a definitive diagnosis of liver cancer is always based on microscopic (histological) confirmation. However, some liver cancers are well differentiated, which means they are made up of nearly fully developed, mature liver cells (hepatocytes). Therefore, these cancers can look very similar to non-cancerous liver tissue under a microscope. Moreover, not all pathologists are trained to recognize the subtle differences between well-differentiated liver cancer and normal liver tissue. Also, some pathologists can mistake liver cancer for adenocarcinoma in the liver. An adenocarcinoma is a different type of cancer, and, as previously mentioned, it originates from outside of the liver. Most importantly, a metastatic adenocarcinoma would be treated differently from a primary liver cancer (liver cancer). Therefore, all of this considered, it is important that an expert liver pathologist review the tissue slides of liver tumors in questionable situations.
Tissue can be sampled with a very thin needle. This technique is called fine needle aspiration. When a larger needle is used to obtain a core of tissue, the technique is called a biopsy. Generally, radiologists, using ultrasound or CT scans to guide the placement of the needle, perform the biopsies or fine needle aspirations. The most common risk of the aspiration or biopsy is bleeding, especially because liver cancer is a tumor that is very vascular (contains many blood vessels). Rarely, new foci (small areas) of tumor can be seeded (planted) from the tumor by the needle into the liver along the needle track.
The aspiration procedure is safer than a biopsy with less risk for bleeding. However, interpretation of the specimen obtained by aspiration is more difficult because often only a cluster of cells is available for evaluation. Thus, a fine needle aspiration requires a highly skilled pathologist. Moreover, a core of tissue obtained with a biopsy needle is more ideal for a definitive diagnosis because the architecture of the tissue is preserved. The point is that sometimes a precise diagnosis can be important clinically. For example, some studies have shown that the degree of differentiation of the tumor may predict the patient's outcome (prognosis). That is to say, the more differentiated (resembling normal liver cells) the tumor is, the better the prognosis.
All of that said, in many instances, there is probably no need for a tissue diagnosis by biopsy or aspiration. If a patient has a risk factor for liver cancer (for example, cirrhosis, chronic hepatitis B, or chronic hepatitis C) and a significantly elevated alpha-fetoprotein blood level, the doctor can be almost certain that the patient has liver cancer without doing a biopsy. The patient and physician should always ask two questions before deciding on doing a liver biopsy:
1. Is this tumor most likely an liver cancer?
2. Will the biopsy findings change the management of the patient?
If the answer to both questions is yes, then the biopsy should be done. Finally, there are two other situations related to liver cancer in which a biopsy may be considered. The first is to characterize a liver abnormality (for example, a possible tumor) seen by imaging in the absence of risk factors for liver cancer or elevated alpha-fetoprotein. The second is to determine the extent of disease when there are multiple areas of abnormalities (possibly tumors) seen by imaging in the liver.
Overall, no blanket recommendation can be given regarding the need for liver biopsy or aspiration. The decision has to be made on an individual basis, depending on the treatment options and the expertise of the medical and surgical teams.

Symptoms and Signs of Liver Cancer


Symptoms

The initial symptoms (the clinical presentations) of liver cancer are variable. In countries where liver cancer is very common, the cancer generally is discovered at a very advanced stage of disease for several reasons. For one thing, areas where there is a high frequency of liver cancer are generally developing countries where access to healthcare is limited. For another, screening examinations for patients at risk for developing liver cancer are not available in these areas. In addition, patients from these regions actually have more aggressive liver cancer disease. In other words, the tumor usually reaches an advanced stage and causes symptoms more rapidly. In contrast, patients in areas of low liver cancer frequency tend to have liver cancer tumors that progress more slowly and, therefore, remain without symptoms longer.
Abdominal pain is the most common symptom of liver cancer and usually signifies a very large tumor or widespread involvement of the liver. Additionally, unexplained weight loss or unexplained fevers are warning signs of liver cancer in patients with cirrhosis. These symptoms are less common in individuals with liver cancer in the U.S. because these patients are usually diagnosed at an earlier stage. However, whenever the overall health of a patient with cirrhosis deteriorates, every effort should be made to look for liver cancer.
A very common initial presentation of liver cancer in a patient with compensated cirrhosis (no complications of liver disease) is the sudden onset of a complication. For example, the sudden appearance of ascites (abdominal fluid and swelling), jaundice (yellow color of the skin), or muscle wasting without causative (precipitating) factors (for example, alcohol consumption) suggests the possibility of liver cancer. What's more, the cancer can invade and block the portal vein (a large vein that brings blood to the liver from the intestine and spleen). When this happens, the blood will travel paths of less resistance, such as through esophageal veins. This causes increased pressure in these veins, which results in dilated (widened) veins called esophageal varices. The patient then is at risk for hemorrhage from the rupture of the varices into the gastrointestinal tract. Rarely, the cancer itself can rupture and bleed into the abdominal cavity, resulting in bloody ascites.

Signs

On physical examination, an enlarged, sometimes tender, liver is the most common finding. Liver cancers are very vascular (containing many blood vessels) tumors. Thus, increased amounts of blood feed into the hepatic artery (artery to the liver) and cause turbulent blood flow in the artery. The turbulence results in a distinct sound in the liver (hepatic bruit) that can be heard with a stethoscope in about one quarter to one half of patients with liver cancer. Any sign of advanced liver disease (for example, ascites, jaundice, or muscle wasting) means a poor prognosis. Rarely, a patient with liver cancer can become suddenly jaundiced when the tumor erodes into the bile duct. The jaundice occurs in this situation because both sloughing of the tumor into the duct and bleeding that clots in the duct can block the duct.
In advanced liver cancer, the tumor can spread locally to neighboring tissues or, through the blood vessels, to elsewhere in the body (distant metastasis). Locally, liver cancer can invade the veins that drain the liver (hepatic veins). The tumor can then block these veins, which results in congestion of the liver. The congestion occurs because the blocked veins cannot drain the blood out of the liver. (Normally, the blood in the hepatic veins leaving the liver flows through the inferior vena cava, which is the largest vein that drains into the heart.) In African patients, the tumor frequently blocks the inferior vena cava. Blockage of either the hepatic veins or the inferior vena cava results in a very swollen liver and massive formation of ascites. In some patients, as previously mentioned, the tumor can invade the portal vein and lead to the rupture of esophageal varices.
Regarding the distant metastases, liver cancer frequently spreads to the lungs, presumably by way of the blood stream. Usually, patients do not have symptoms from the lung metastases, which are diagnosed by radiologic (x-ray) studies. Rarely, in very advanced cases, liver cancer can spread to the bone or brain.

Risk factors for Liver Cancer


Hepatitis B infection


The role of hepatitis B virus (HBV) infection in causing liver cancer is well established. Several lines of evidence point to this strong association. As noted earlier, the frequency of liver cancer relates to (correlates with) the frequency of chronic hepatitis B virus infection. In addition, the patients with hepatitis B virus who are at greatest risk for liver cancer are men with hepatitis B virus cirrhosis (scarring of the liver) and a family history of liver cancer. Perhaps the most convincing evidence, however, comes from a prospective (looking forward in time) study done in the 1970's in Taiwan involving male government employees over the age of 40. In this study, the investigators found that the risk of developing liver cancer was 200 times higher among employees who had chronic hepatitis B virus as compared to employees without chronic hepatitis B virus!
Studies in animals also have provided evidence that hepatitis B virus can cause liver cancer. For example, we have learned that liver cancer develops in other mammals that are naturally infected with hepatitis B virus-related viruses. Finally, by infecting transgenic mice with certain parts of the hepatitis B virus, scientists caused liver cancer to develop in mice that do not usually develop liver cancer. (Transgenic mice are mice that have been injected with new or foreign genetic material.)
How does chronic hepatitis B virus cause liver cancer? In patients with both chronic hepatitis B virus and liver cancer, the genetic material of hepatitis B virus is frequently found to be part of the genetic material of the cancer cells. It is thought, therefore, that specific regions of the hepatitis B virus genome (genetic code) enter the genetic material of the liver cells. This hepatitis B virus genetic material may then disrupt the normal genetic material in the liver cells, thereby causing the liver cells to become cancerous.
The vast majority of liver cancer that is associated with chronic hepatitis B virus occurs in individuals who have been infected most of their lives. In areas where hepatitis B virus is not always present (endemic) in the community (for example, the U.S.), liver cancer is relatively uncommon. The reason for this is that most of the people with chronic hepatitis B virus in these areas acquired the infection as adults. However, liver cancer can develop in individuals who acquired chronic hepatitis B virus in adulthood if there are other risk factors, such as chronic alcohol use or co-infection with chronic hepatitis C virus infection.

Hepatitis C infection

Hepatitis C virus (HCV) infection is also associated with the development of liver cancer. In fact, in Japan, hepatitis C virus is present in up to 75% of cases of liver cancer. As with hepatitis B virus, the majority of hepatitis C virus patients with liver cancer have associated cirrhosis (liver scarring). In several retrospective-prospective studies (looking backward and forward in time) of the natural history of hepatitis C, the average time to develop liver cancer after exposure to hepatitis C virus was about 28 years. The liver cancer occurred about eight to 10 years after the development of cirrhosis in these patients with hepatitis C. Several prospective European studies report that the annual incidence (occurrence over time) of liver cancer in cirrhotic hepatitis C virus patients ranges from 1.4 to 2.5% per year.
In hepatitis C virus patients, the risk factors for developing liver cancer include the presence of cirrhosis, older age, male gender, elevated baseline alpha-fetoprotein level (a blood tumor marker), alcohol use, and co-infection with hepatitis B virus. Some earlier studies suggested that hepatitis C virus genotype 1b (a common genotype in the U.S.) may be a risk factor, but more recent studies do not support this finding.
The way in which hepatitis C virus causes liver cancer is not well understood. Unlike hepatitis B virus, the genetic material of hepatitis C virus is not inserted directly into the genetic material of the liver cells. It is known, however, that cirrhosis from any cause is a risk factor for the development of liver cancer. It has been argued, therefore, that hepatitis C virus, which causes cirrhosis of the liver, is an indirect cause of liver cancer.
On the other hand, there are some chronic hepatitis C virus infected individuals who have liver cancer without cirrhosis. So, it has been suggested that the core (central) protein of hepatitis C virus is the culprit in the development of liver cancer. The core protein itself (a part of the hepatitis C virus) is thought to impede the natural process of cell death or interfere with the function of a normal tumor suppressor (inhibitor) gene (the p53 gene). The result of these actions is that the liver cells go on living and reproducing without the normal restraints, which is what happens in cancer.
Alcohol

Cirrhosis caused by chronic alcohol consumption

It is the most common association of liver cancer in the developed world. Actually, we now understand that many of these cases are also infected with chronic hepatitis C virus. The usual setting is an individual with alcoholic cirrhosis who has stopped drinking for ten years, and then develops liver cancer. It is somewhat unusual for an actively drinking alcoholic to develop liver cancer. What happens is that when the drinking is stopped, the liver cells try to heal by regenerating (reproducing). It is during this active regeneration that a cancer-producing genetic change (mutation) can occur, which explains the occurrence of liver cancer after the drinking has been stopped.
Patients who are actively drinking are more likely to die from non-cancer related complications of alcoholic liver disease (for example, liver failure). Indeed, patients with alcoholic cirrhosis who die of liver cancer are about 10 years older than patients who die of non-cancer causes. Finally, as noted above, alcohol adds to the risk of developing liver cancer in patients with chronic hepatitis C virus or hepatitis B virus infections.

Aflatoxin B1

Aflatoxin B1 is the most potent liver cancer-forming chemical known. It is a product of a mold called Aspergillus flavus, which is found in food that has been stored in a hot and humid environment. This mold is found in such foods as peanuts, rice, soybeans, corn, and wheat. Aflatoxin B1 has been implicated in the development of liver cancer in Southern China and Sub-Saharan Africa. It is thought to cause cancer by producing changes (mutations) in the p53 gene. These mutations work by interfering with the gene's important tumor suppressing (inhibiting) functions.

Drugs, medications, and chemicals

There are no medications that cause liver cancer, but female hormones (estrogens) and protein-building (anabolic) steroids are associated with the development of hepatic adenomas. These are benign liver tumors that may have the potential to become malignant (cancerous). Thus, in some individuals, hepatic adenoma can evolve into cancer.
Certain chemicals are associated with other types of cancers found in the liver. For example, thorotrast, a previously used contrast agent for imaging, caused a cancer of the blood vessels in the liver called hepatic angiosarcoma. Also, vinyl chloride, a compound used in the plastics industry, can cause hepatic angiosarcomas that appear many years after the exposure.
Hemochromatosis

Liver cancer will develop in up to 30% of patients with hereditary hemochromatosis. Patients at the greatest risk are those who develop cirrhosis with their hemochromatosis. Unfortunately, once cirrhosis is established, effective removal of excess iron (the treatment for hemochromatosis) will not reduce the risk of developing liver cancer.
Cirrhosis

Individuals with most types of cirrhosis of the liver are at an increased risk of developing liver cancer. In addition to the conditions described above (hepatitis B, hepatitis C, alcohol, and hemochromatosis), alpha 1 anti-trypsin deficiency, a hereditary condition that can cause emphysema and cirrhosis, may lead to liver cancer. Liver cancer is also strongly associated with hereditary tyrosinemia, a childhood biochemical abnormality that results in early cirrhosis.
Certain causes of cirrhosis are less frequently associated with liver cancer than are other causes. For example, liver cancer is rarely seen with the cirrhosis in Wilson's disease (abnormal copper metabolism) or primary sclerosing cholangitis (chronic scarring and narrowing of the bile ducts). It used to be thought that liver cancer is rarely found in primary biliary cirrhosid (PBC) as well. Recent studies, however, show that the frequency of liver cancer in PBC is comparable to that in other forms of cirrhosis.

Monday, May 11, 2009

Surgical Treatment of Hepatocellular Carcinoma ( HCC )

The treatment options are dictated by the stage of liver cancer and the overall condition of the patient. The only proven cure for liver cancer is liver transplantation for a solitary, small (<3cm)>

Liver resection


The goal of liver resection is to completely remove the tumor and the appropriate surrounding liver tissue without leaving any tumor behind. This option is limited to patients with one or two small (3 cm or less) tumors and excellent liver function, ideally without associated cirrhosis. As a result of these strict guidelines, in practice, very few patients with liver cancer can undergo liver resection. The biggest concern about resection is that following the operation, the patient can develop liver failure. The liver failure can occur if the remaining portion of the liver is inadequate to provide the necessary support for life. Even in carefully selected patients, about 10% of them are expected to die shortly after surgery, usually as a result of liver failure.

When a portion of a normal liver is removed, the remaining liver can grow back (regenerate) to the original size within one to two weeks. A cirrhotic liver, however, cannot grow back. Therefore, before resection is performed for liver cancer, the non-tumor portion of the liver should be biopsied to determine whether there is associated cirrhosis.

For patients whose tumors are successfully resected, the five-year survival is about 30 to 40%. This means that 30 to 40 % of patients who actually undergo liver resection for liver cancer are expected to live five years. Many of these patients, however, will have a recurrence of liver cancer elsewhere in the liver. Moreover, it should be noted that the survival rate of untreated patients with similar sized tumors and similar liver function is probably comparable. Some studies from Europe and Japan have shown that survival rates with alcohol injection or radiofrequency ablation procedures are comparable to the survival rates of those patients who underwent resection. But again, the reader should be cautioned that there are no head-to-head comparisons of these procedures versus resection.

Liver transplantation

Liver transplantation has become an accepted treatment for patients with end-stage (advanced) liver disease of various types (for example, chronic hepatitis B and C, alcoholic cirrhosis, primary biliary cirrhosis, and sclerosing cholangitis). Survival rates for these patients without liver cancer are 90% at one year, 80% at three years, and 75% at five years. Moreover, liver transplantation is the best option for patients with tumors that are less than 5 cm in size who also have signs of liver failure. In fact, as one would expect, patients with small cancers (less than 3 cm) and no involvement of the blood vessels do very well. These patients have a less than 10% risk of recurrent liver cancer after transplant. On the other hand, there is a very high risk of recurrence in patients with tumors greater than 5 cm or with involvement of blood vessels. For these reasons, when patients are being evaluated for treatment of liver cancer, every effort should be made to characterize the tumor and look for signs of spread beyond the liver.

There is a severe shortage of organ donors in the U.S. Currently, there are about 18,000 patients on the waiting list for liver transplantation. About 4,000 donated cadaver livers (taken at the time of death) are available per year for patients with the highest priority. This priority goes to patients on the transplant waiting list who have the most severe liver failure. As a result, in many liver cancer patients, while they are on the waiting list, the tumor may become too large for the patient to benefit from liver transplantation. Doing palliative treatments, such as TACE, while the patient is on the waiting list for liver transplantation is currently being evaluated.

The use of a partial liver from a healthy, live donor may provide a few patients with liver cancer an opportunity to undergo liver transplantation before the tumor becomes too large. This innovation is a very exciting development in the field of liver transplantation.

As a precaution, doing a biopsy or aspiration of liver cancer should probably be avoided in patients considering liver transplantation. The reason to avoid needling the liver is that there is about a 1-4% risk of seeding (planting) cancer cells from the tumor by the needle into the liver along the needle track. You see, after liver transplantation, patients take powerful anti-rejection medications to prevent the patient's immune system from rejecting the new liver. However, the suppressed immune system can allow new foci (small areas) of cancer cells to multiply rapidly. These new foci of cancer cells would normally be kept at bay by the immune cells of an intact immune system.

In summary, liver resection should be reserved for patients with small tumors and normal liver function (no evidence of cirrhosis). Patients with multiple or large tumors should receive palliative therapy with intra-arterial chemotherapy or TACE, provided they do not have signs of severe liver failure. Patients with an early stage of cancer and signs of chronic liver disease should receive palliative treatment and undergo evaluation for liver transplantation.

Is there a role for routine screening for liver cancer?

It makes sense to screen for liver cancer just as we do for colon, cervical, breast, and prostate cancer. However, the difference is that there is, as yet, no cost-effective way of screening for liver cancer. Blood levels of alpha-fetoprotein are normal in up to 50% of patients with small liver cancer. Ultrasound scanning, which is non-invasive and very safe, is, as mentioned before, operator-dependent. Therefore, the effectiveness of a screening ultrasound that is done at a small facility can be very suspect.

Even more disappointing is the fact that no study outside of Asia has shown, on a large scale, that early detection of liver cancer saved lives. Why is that? It is because, as already noted, the treatment for liver cancer, except for liver transplantation, is not very effective. Also, keep in mind that patients found with small tumors on screening live longer than patients with larger tumors only because of what is called a "lead time bias." In other words, they seem to liver longer (the bias) only because the cancer was discovered earlier (the lead time), not because of any treatment given.

Nevertheless, strong arguments can be made for routine screening. For example, the discovery of an liver cancer in the early stages allows for the most options for treatment, including liver resection and liver transplantation. Therefore, all patients with cirrhosis, particularly cirrhosis caused by chronic hepatitis B or C, hemochromatosis, and alcohol, should be screened at six- to 12-month intervals with a blood alpha-fetoprotein and an imaging study. I favor alternating between an ultrasound and CT scan (or MRI). Patients with chronically (long duration) elevated alpha-fetoprotein levels warrant more frequent imaging since these patients are at even higher risk of developing liver cancer.