Sunday, May 24, 2009

Medical Treatment of Hepatocellular Carcinoma ( HCC )





Chemotherapy Systemic (entire body) chemotherapy

The most commonly used systemic chemotherapeutic agents are doxorubicin (Adriamycin) and 5-fluorouracil (5 FU). These drugs are used together or in combination with new experimental agents. These drugs are quite toxic and results have been disappointing. A few studies suggest some benefit with tamoxifen (Nolvadex) but just as many studies show no advantage. Octreotide (Sandostatin) given as an injection was shown in one study to slow down the progression of large liver cancer tumors, but so far, no other studies have confirmed this benefit.

Hepatic arterial infusion of chemotherapy

The normal liver gets its blood supply from two sources; the portal vein (about 70%) and the hepatic artery (30%). However, liver cancer gets its blood exclusively from the hepatic artery. Making use of this fact, investigators have delivered chemotherapy agents selectively through the hepatic artery directly to the tumor. The theoretical advantage is that higher concentrations of the agents can be delivered to the tumors without subjecting the patients to the systemic toxicity of the agents.

In reality, however, much of the chemotherapeutic agents does end up in the rest of the body. Therefore, selective intra-arterial chemotherapy can cause the usual systemic (body-wide) side effects. In addition, this treatment can result in some regional side effects, such as inflammation of the gallbladder (cholecystitis), intestinal and stomach ulcers, and inflammation of the pancreas (pancreatitis). Liver cancer patients with advanced cirrhosis may develop liver failure after this treatment. Well then, what is the benefit of intra-arterial chemotherapy? The bottom line is that fewer than 50% of patients will experience a reduction in tumor size.

An interventional radiologist (one who does therapeutic procedures) usually carries out this procedure. The radiologist must work closely with an oncologist (cancer specialist), who determines the amount of chemotherapy that the patient receives at each session. Some patients may undergo repeat sessions at 6 to 12 week intervals. This procedure is done with the help of fluoroscopy (type of x-ray) imaging. A catheter (long, narrow tube) is inserted into the femoral artery in the groin and is threaded into the aorta (the main artery of the body). From the aorta, the catheter is advanced into the hepatic artery. Once the branches of the hepatic artery that feed the liver cancer are identified, the chemotherapy is infused. The whole procedure takes one to two hours, and then the catheter is removed.

The patient generally stays in the hospital overnight for observation. A sandbag is placed over the groin to compress the area where the catheter was inserted into the femoral artery. The nurses periodically check for signs of bleeding from the femoral artery puncture. They also check for the pulse in the foot on the side of the catheter insertion to be sure that the femoral artery is not blocked as a result of the procedure. (Blockage would be signaled by the absence of a pulse.)

Generally, the liver tests increase (get worse) during the two to three days after the procedure. This worsening of the liver tests is actually due to death of the tumor (and some non-tumor) cells. The patient may experience some post-procedure abdominal pain and low-grade fever. However, severe abdominal pain and vomiting suggest that a more serious complication has developed. Imaging studies of the liver are repeated in six to 12 weeks to assess the size of the tumor in response to the treatment. For more, please read the Chemotherapy article.

Chemoembolization (trans-arterial chemoembolization or TACE)

This technique takes advantage of the fact that liver cancer is a very vascular (contains many blood vessels) tumor and gets its blood supply exclusively from the branches of the hepatic artery. This procedure is similar to intra-arterial infusion of chemotherapy. But in TACE, there is the additional step of blocking (embolizing) the small blood vessels with different types of compounds, such as gelfoam or even small metal coils. Thus, TACE has the advantages of exposing the tumor to high concentrations of chemotherapy and confining the agents locally since they are not carried away by the blood stream. At the same time, this technique deprives the tumor of its needed blood supply, which can result in the damage or death of the tumor cells.

The type and frequency of complications of TACE and intra-arterial chemotherapy are similar. The potential disadvantage of TACE is that blocking the feeding vessels to the tumor(s) may make future attempts at intra-arterial infusions impossible. Moreover, so far, there are no head-to-head studies directly comparing the effectiveness of intra-arterial infusion versus chemoembolization. In Japan, the chemotherapeutic agents are mixed with lipiodol. The idea is that since the tumor cells preferentially take up lipiodol, they would likewise take up the chemotherapy. This Japanese technique has not yet been validated in head-to-head comparisons with conventional TACE.

What are the benefits of TACE? In one large study involving several institutions in Italy, chemoembolization did not seem to be beneficial. Patients who did not undergo TACE lived as long as patients who received TACE, even though the tumors were more likely to shrink in size in patients who were treated. Does this mean that TACE or intra-arterial chemotherapy does not work? Maybe, maybe not.

Studies in Japan have shown that TACE can downstage liver cancer. In other words, the tumors shrank enough to lower (improve) the stage of the cancer. From the practical point of view, shrinking the tumor creates the option for surgery in some of these patients. Otherwise, these patients had tumors that were not operable (eligible for operation) because of the initial large size of their tumors. More importantly, these same studies showed an improvement in survival in patients whose tumors became considerably smaller. In the U.S., trials are underway to see whether doing TACE before liver transplantation increases patient survival as compared to liver transplantation without TACE.

It is safe to say that TACE or intra-arterial chemoinfusion are palliative treatment options for liver cancer. This means that these procedures can provide relief or make the disease less severe. However, they are not curative (do not result in a cure). Fewer than 50% of patients will have some shrinkage in tumor size. Further, they can be used only in patients with relatively preserved liver function. The reason for this is that these procedures, as mentioned previously, can lead to liver failure in individuals with poor liver function.

Ablation techniques

Radiofrequency ablation (RFA) therapy

In the U.S., RFA therapy has become the ablation (tissue destruction) therapy of choice among surgeons. The surgeon can perform this procedure laparoscopically (through small holes in the abdomen) or during open exploration of the abdomen. In some instances, the procedure can be done without opening the abdomen by just using ultrasound for visual guidance.

In RFA, heat is generated locally by a high frequency, alternating current that flows from the electrodes. A probe is inserted into the center of the tumor and the non-insulated electrodes, which are shaped like prongs, are projected into the tumor. The local heat that is generated melts the tissue (coagulative necrosis) that is adjacent to the probe. The probe is left in place for about 10 to 15 minutes. The whole procedure is monitored visually by ultrasound scanning. The ideal size of an liver cancer tumor for RFA is less than 3 cm. Larger tumors may require more than one session. This treatment should be viewed as palliative (providing some relief), not curative.

Percutaneous ethanol (alcohol) injection

In this technique, pure alcohol is injected into the tumor through a very thin needle with the help of ultrasound or CT visual guidance. Alcohol induces tumor destruction by drawing water out of tumor cells (dehydrating them) and thereby altering (denaturing) the structure of cellular proteins. It may take up to five or six sessions of injections to completely destroy the cancer. The ideal patient for alcohol injection has fewer than three liver cancer tumors, each of which is:

* well defined (distinct margins)
* less than 3 cm in diameter
* surrounded by a shell consisting of scar tissue (fibrous encapsulation)
* not near the surface of the liver

Additionally, patients with liver cancer undergoing alcohol injection should have no signs of chronic liver failure, such as ascites or jaundice. (Patients with liver failure would not be able to tolerate the alcohol injections.)

The most common side effect of alcohol injection is leakage of alcohol onto the surface of the liver and into the abdominal cavity, thereby causing pain and fever. It is important that the location of the tumor relative to the adjacent blood vessels and bile ducts is clearly identified. The reason for needing to locate these structures is to avoid injuring them during the procedure and causing bleeding, bile duct inflammation, or bile leakage.

Proton beam therapy

This technique is able to deliver high doses of radiation to a defined local area. Proton beam therapy is used in the treatment of other solid tumors as well. There are not much data yet regarding the efficacy of this treatment in liver cancer. The ideal patient is one with only asmall(<5 style="font-size:130%;">Surgery

Surgical options are limited to individuals whose tumors are less than 5 cm and confined to the liver, with no invasion of the blood vessels.

No comments: