Tuesday, July 7, 2009

HEPATITIS B

Hepatitis B is a disease caused by HBV hepatitis B virus which infects the liver of hominoidae, including humans, and causes an inflammation called hepatitis.
Originally known as "serum hepatitis", the disease has caused epidemics in parts of Asia and Africa, and it is endemic in China.
About a third of the world's population, more than 2 billion people, have been infected with the hepatitis B virus.
This includes 350 million chronic carriers of the virus.
Transmission of hepatitis B virus results from exposure to infectious blood or body fluids containing blood.
The acute illness causes liver inflammation, vomiting, jaundice and—rarely—death. Chronic hepatitis B may eventually cause liver cirrhosis and liver cancer—a fatal disease with very poor response to current chemotherapy.
The infection is preventable by vaccination.
Hepatitis B virus is an hepadnavirus—hepa from hepatotrophic and dna because it is a DNA virus—and it has a circular genome composed of partially double-stranded DNA.
The viruses replicate through an RNA intermediate form by reverse transcription, and in this respect they are similar to retroviruses.
Although replication takes place in the liver, the virus spreads to the blood where virus-specific proteins and their corresponding antibodies are found in infected people.
Blood tests for these proteins and antibodies are used to diagnose the infection.

Virology

Hepatitis B virus (HBV) is a member of the Hepadnavirus family.
The virus particle, (virion) consists of an outer lipid envelope and an icosahedral nucleocapsid core composed of protein.
The nucleocapsid encloses the viral DNA and a DNA polymerase that has reverse transcriptase activity.
The outer envelope contains embedded proteins which are involved in viral binding of, and entry into, susceptible cells.
The virus is one of the smallest enveloped animal viruses with a virion diameter of 42nm, but pleomorphic forms exist, including filamentous and spherical bodies lacking a core.
These particles are not infectious and are composed of the lipid and protein that forms part of the surface of the virion, which is called the surface antigen (HBsAg), and is produced in excess during the life cycle of the virus.

Genome

The genome of HBV is made of circular DNA, but it is unusual because the DNA is not fully double-stranded. One end of the full length strand is linked to the viral DNA polymerase.
The genome is 3020-3320 nucleotides long (for the full length strand) and 1700-2800 nucleotides long (for the short length strand).
The negative-sense, (non-coding), is complementary to the viral mRNA.
The viral DNA is found in the nucleus soon after infection of the cell. The partially double-stranded DNA is rendered fully double-stranded by completion of the (+) sense strand and removal of a protein molecule from the (-) sense strand and a short sequence of RNA from the (+) sense strand.
Non-coding bases are removed from the ends of the (-)sense strand and the ends are rejoined.
There are four known genes encoded by the genome called C, X, P, and S.
The core protein is coded for by gene C (HBcAg), and its start codon is preceded by an upstream in-frame AUG start codon from which the pre-core protein is produced.
HBeAg is produced by proteolytic processing of the pre-core protein.
The DNA polymerase is encoded by gene P. Gene S is the gene that codes for the surface antigen (HBsAg).
The HBsAg gene is one long open reading frame but contains three in frame "start" (ATG) codons that divide the gene into three sections, pre-S1, pre-S2, and S. Because of the multiple start codons, polypeptides of three different sizes called large, middle, and small (pre-S1 + pre-S2 + S, pre-S2 + S, or S) are produced.
The function of the protein coded for by gene X is not fully understood.[13]


Replication

The life cycle of Hepatitis B virus is complex. Hepatitis B is one of a few known non-retroviral viruses which use reverse transcription as a part of its replication process.
The virus gains entry into the cell by binding to an unknown receptor on the surface of the cell and enters it by endocytosis.
Because the virus multiplies via RNA made by a host enzyme, the viral genomic DNA has to be transferred to the cell nucleus by host proteins called chaperones.
The partially double stranded viral DNA is then made fully double stranded and transformed into covalently closed circular DNA (cccDNA) that serves as a template for transcription of four viral mRNAs. The largest mRNA, (which is longer than the viral genome), is used to make the new copies of the genome and to make the capsid core protein and the viral DNA polymerase.
These four viral transcripts undergo additional processing and go on to form progeny virions which are released from the cell or returned to the nucleus and re-cycled to produce even more copies.
The long mRNA is then transported back to the cytoplasm where the virion P protein synthesizes DNA via its reverse transcriptase activity.

Serotypes

The virus is divided into four major serotypes (adr, adw, ayr, ayw) based on antigenic epitopes presented on its envelope proteins, and into eight genotypes (A-H) according to overall nucleotide sequence variation of the genome.
The genotypes have a distinct geographical distribution and are used in tracing the evolution and transmission of the virus.
Differences between genotypes affect the disease severity, course and likelihood of complications, and response to treatment and possibly vaccination.

Pathogenesis

Cirrhosis of the liver and liver cancer may ensue from Hepatitis B.
The hepatitis B virus primarily interferes with the functions of the liver by replicating in liver cells, known as hepatocytes.
The receptor is not yet known, though there is evidence that the receptor in the closely related duck hepatitis B virus is carboxypeptidase D.
HBV virions (DANE particle) bind to the host cell via the preS domain of the viral surface antigen and are subsequently internalized by endocytosis.
PreS and IgA receptors are accused of this interaction.
HBV-preS specific receptors are primarily expressed on hepatocytes; however, viral DNA and proteins have also been detected in extrahepatic sites, suggesting that cellular receptors for HBV may also exist on extrahepatic cells.
During HBV infection, the host immune response causes both hepatocellular damage and viral clearance.
Although the innate immune response does not play a significant role in these processes, the adaptive immune response, particularly virus-specific cytotoxic T lymphocytes (CTLs), contributes to most of the liver injury associated with HBV infection.
By killing infected cells and by producing antiviral cytokines capable of purging HBV from viable hepatocytes, CTLs eliminate the virus.[19] Although liver damage is initiated and mediated by the CTLs, antigen-nonspecific inflammatory cells can worsen CTL-induced immunopathology, and platelets activated at the site of infection may facilitate the accumulation of CTLs in the liver.

Epidemiology

The primary method of transmission reflects the prevalence of chronic HBV infection in a given area.
In low prevalence areas such as the continental United States and Western Europe, where less than 2% of the population is chronically infected, injection drug abuse and unprotected sex are the primary methods, although other factors may be important.
In moderate prevalence areas, which include Eastern Europe, Russia, and Japan, where 2-7% of the population is chronically infected, the disease is predominantly spread among children.
In high prevalence areas such as China and South East Asia, transmission during childbirth is most common, although in other areas of high endemicity such as Africa, transmission during childhood is a significant factor.
The prevalence of chronic HBV infection in areas of high endemicity is at least 8%.

Transmission

Transmission of hepatitis B virus results from exposure to infectious blood or body fluids containing blood.
Possible forms of transmission include (but are not limited to) unprotected sexual contact, blood transfusions, re-use of contaminated needles & syringes, and vertical transmission from mother to child during childbirth.
Without intervention, a mother who is positive for HBsAg confers a 20% risk of passing the infection to her offspring at the time of birth. This risk is as high as 90% if the mother is also positive for HBeAg.
HBV can be transmitted between family members within households, possibly by contact of nonintact skin or mucous membrane with secretions or saliva containing HBV.
However, at least 30% of reported hepatitis B among adults cannot be associated with an identifiable risk factor.

Medical aspects

Several vaccines have been developed for the prevention of hepatitis B virus infection.
These rely on the use of one of the viral envelope proteins (hepatitis B surface antigen or HBsAg).
The vaccine was originally prepared from plasma obtained from patients who had long-standing hepatitis B virus infection.
However, currently, these are more often made using recombinant DNA technology, though plasma-derived vaccines continue to be used; the two types of vaccines are equally effective and safe.
Following vaccination Hepatitis B Surface antigen may be detected in serum for several days; this is known as vaccine antigenaemia.
Vaccine is generally administered in either a two, three, or four dose schedules; and can be received by infants to adults. It provides protection for 85-90% of individuals, and lasts for 23 years.
Unlike Hepatitis A, Hepatitis B does not generally spread through water and food.
Instead, it is transmitted through body fluids, from which prevention is taken to avoid: unprotected sexual contact, blood transfusions, re-use of contaminated needles and syringes, and vertical transmission during child birth.
Infants may be vaccinated at birth.

Symptoms

Acute infection with hepatitis B virus is associated with acute viral hepatitis - an illness that begins with general ill-health, loss of appetite, nausea, vomiting, body aches, mild fever, dark urine, and then progresses to development of jaundice.
It has been noted that itchy skin has been an indication as a possible symptom of all hepatitis virus types.
The illness lasts for a few weeks and then gradually improves in most affected people.
A few patients may have more severe liver disease (fulminant hepatic failure), and may die as a result of it.
The infection may be entirely asymptomatic and may go unrecognized.
Chronic infection with Hepatitis B virus may be either asymptomatic or may be associated with a chronic inflammation of the liver (chronic hepatitis), leading to cirrhosis over a period of several years.
This type of infection dramatically increases the incidence of hepatocellular carcinoma (liver cancer). Chronic carriers are encouraged to avoid consuming alcohol as it increases their risk for cirrhosis and liver cancer.
Hepatitis B virus has been linked to the development of Membranous glomerulonephritis (MGN).

Diagnosis

The hepatitis B surface antigen (HBsAg) is most frequently used to screen for the presence of this infection.
It is the first detectable viral antigen to appear during infection.
However, early in an infection, this antigen may not be present and it may be undetectable later in the infection as it is being cleared by the host.
The infectious virion contains an inner "core particle" enclosing viral genome.
The icosahedral core particle is made of 180 or 240 copies of core protein, alternatively known as hepatitis B core antigen, or HBcAg.
During this 'window' in which the host remains infected but is successfully clearing the virus, IgM antibodies to the hepatitis B core antigen (anti-HBc IgM) may be the only serological evidence of disease.
Shortly after the appearance of the HBsAg, another antigen named as the hepatitis B e antigen (HBeAg) will appear.
Traditionally, the presence of HBeAg in a host's serum is associated with much higher rates of viral replication and enhanced infectivity; however, variants of the hepatitis B virus do not produce the 'e' antigen, so this rule does not always hold true.
During the natural course of an infection, the HBeAg may be cleared, and antibodies to the 'e' antigen (anti-HBe) will arise immediately afterwards.
This conversion is usually associated with a dramatic decline in viral replication.
If the host is able to clear the infection, eventually the HBsAg will become undetectable and will be followed by IgG antibodies to the hepatitis B surface antigen and core antigen, (anti-HBs and anti HBc IgG). A person negative for HBsAg but positive for anti-HBs has either cleared an infection or has been vaccinated previously.
Individuals who remain HBsAg positive for at least six months are considered to be hepatitis B carriers.
Carriers of the virus may have chronic hepatitis B, which would be reflected by elevated serum alanine aminotransferase levels and inflammation of the liver, as revealed by biopsy.
Carriers who have seroconverted to HBeAg negative status, particularly those who acquired the infection as adults, have very little viral multiplication and hence may be at little risk of long-term complications or of transmitting infection to others.
More recently, PCR tests have been developed to detect and measure the amount of viral nucleic acid in clinical specimens.
These tests are called viral loads and are used to assess a person's infection status and to monitor treatment.

Prognosis

Hepatitis B virus infection may either be acute (self-limiting) or chronic (long-standing).
Persons with self-limiting infection clear the infection spontaneously within weeks to months.
Children are less likely than adults to clear the infection.
More than 95% of people who become infected as adults or older children will stage a full recovery and develop protective immunity to the virus.
However, only 5% of newborns that acquire the infection from their mother at birth will clear the infection. This population has a 40% lifetime risk of death from cirrhosis or hepatocellular carcinoma.
Of those infected between the age of one to six, 70% will clear the infection.
Hepatitis D infection can only occur with a concomitant infection with Hepatitis B virus because the Hepatitis D virus uses the Hepatitis B virus surface antigen to form a capsid.
Co-infection with hepatitis D increases the risk of liver cirrhosis and liver cancer.
Polyarteritis nodosa is more common in people with hepatitis B infection.

Treatment

Acute hepatitis B infection does not usually require treatment because most adults clear the infection spontaneously.
Early antiviral treatment may only be required in fewer than 1% of patients, whose infection takes a very aggressive course ("fulminant hepatitis") or who are immunocompromised.
On the other hand, treatment of chronic infection may be necessary to reduce the risk of cirrhosis and liver cancer.
Chronically infected individuals with persistently elevated serum alanine aminotransferase, a marker of liver damage, and HBV DNA levels are candidates for therapy.
Although none of the available drugs can clear the infection, they can stop the virus from replicating, and minimize liver damage such as cirrhosis and liver cancer.
Currently, there are seven medications licensed for treatment of hepatitis B infection in the United States.
These include antiviral drugs lamivudine (Epivir), adefovir (Hepsera), tenofovir (Viread), telbivudine (Tyzeka) and entecavir (Baraclude) and the two immune system modulators interferon alpha-2a and pegylated interferon alfa-2a (Pegasys). The use of interferon, which requires injections daily or thrice weekly, has been supplanted by long-acting pegylated interferon, which is injected only once weekly.
However, some individuals are much more likely to respond than others and this might be because of the genotype of the infecting virus or the patient's heredity.
The treatment works by reducing the viral load, (the amount of virus particles as measured in the blood), which in turn reduces viral replication in the liver.
Infants born to mothers known to carry hepatitis B can be treated with antibodies to the hepatitis B virus (hepatitis B immune globulin or HBIg).
When given with the vaccine within twelve hours of birth, the risk of acquiring hepatitis B is reduced 95%. This treatment allows a mother to safely breastfeed her child.

Reactivation

Hepatitis B virus DNA persists in the body after infection and in some people the disease recurs.
Although rare, reactivation is seen most often in people with impaired immunity.
Hepatitis B goes through cycles of replication and non-replication.
Approximately 50% of patients experience acute reactivation.
Male patients with baseline ALT of 200 UL/L are three times more likely to develop a reactivation than patients with lower levels.
Patients who undergo chemotherapy are at risk for HBV reactivation.
The current view are that immunosuppressive drugs favor increased HBV replication while inhibiting cytotoxic T cell function in the liver.

History

The earliest record of an epidemic caused by Hepatitis B virus was made by Lurman in 1885.
An outbreak of smallpox occurred in Bremen in 1883 and 1,289 shipyard employees were vaccinated with lymph from other people. After several weeks, and up to eight months later, 191 of the vaccinated workers became ill with jaundice and were diagnosed as suffering from serum hepatitis.
Other employees who had been inoculated with different batches of lymph remained healthy.
Lurman's paper, now regarded as a classical example of an epidemiological study, proved that contaminated lymph was the source of the outbreak.
Later, numerous similar outbreaks were reported following the introduction, in 1909, of hypodermic needles that were used, and more importantly reused, for administering Salvarsan for the treatment of syphilis.
The virus was not discovered until 1965 when Baruch Blumberg, then working at the National Institutes of Health (NIH), discovered the Australia antigen (later known to be Hepatitis B surface antigen, or HBsAg) in the blood of Australian aboriginal people.
Although a virus had been suspected since the research published by MacCallum in 1947, D.S. Dane and others discovered the virus particle in 1970 by electron microscopy.
By the early 1980s the genome of the virus had been sequenced, and the first vaccines were being tested.
Hepatitis C is an infectious disease affecting the liver, caused by the hepatitis C virus (HCV).
The infection is often asymptomatic, but once established, chronic infection can progress to scarring of the liver (fibrosis), and advanced scarring (cirrhosis) which is generally apparent after many years. In some cases, those with cirrhosis will go on to develop liver failure or other complications of cirrhosis, including liver cancer.

HEPATITIS A

Hepatitis A

Hepatitis A (formerly known as infectious hepatitis) is an acute infectious disease of the liver caused by the hepatitis A virus (HAV)
It is most commonly transmitted by the fecal-oral route via contaminated food or drinking water. Every year, approximately 10 million people worldwide are infected with the virus.
The time between infection and the appearance of the symptoms, (the incubation period), is between two and six weeks and the average incubation period is 28 days.
In developing countries, and in regions with poor hygiene standards, the incidence of infection with this virus is high and the illness is usually contracted in early childhood.
HAV has also been found in samples taken to study ocean water quality.
Hepatitis A infection causes no clinical signs and symptoms in over 90% of these children and since the infection confers lifelong immunity, the disease is of no special significance to the indigenous population. In Europe, the United States and other industrialized countries, on the other hand, the infection is contracted primarily by susceptible young adults, most of whom are infected with the virus during trips to countries with a high incidence of the disease.
Hepatitis A does not have a chronic stage and does not cause permanent liver damage.
Following infection, the immune system makes antibodies against HAV that confer immunity against future infection.
The disease can be prevented by vaccination and hepatitis A vaccine has been proven effective in controlling outbreaks worldwide.

Virology

The Hepatitis virus (HAV) is a Picornavirus; it is non-enveloped and contains a single-stranded RNA packaged in a protein shell. There is only one type of the virus.

Pathogenesis

Following ingestion, HAV enters the bloodstream through the epithelium of the oropharynx or intestine.
The blood carries the virus to its target, the liver, and multiplies within hepatocytes and Kupffer cells (i.e., liver macrophages). There is no apparent virus-mediated cytotoxicity, and liver pathology is likely immune-mediated.
Virions are secreted into the bile and released in stool.
HAV is excreted in large quantities approximately 11 days prior to appearance of symptoms or anti-HAV IgM antibodies in the blood.
The incubation period is 15-50 days, and mortality is less than 0.5%.

Epidemiology

HAV is found in the feces of infected persons and those who are at higher risk include travelers to developing countries where there is a higher incidence rate, and those having sexual contact or drug use with infected persons.
There were 30,000 cases of Hepatitis A reported to the CDC in the U.S. in 1997. The agency estimates that there were as many as 270,000 cases each year from 1980 through 2000.

Transmission

The virus spreads by the fecal-oral route and infections often occur in conditions of poor sanitation and overcrowding.
Hepatitis A can be transmitted by the parenteral route but very rarely by blood and blood products.
Food-borne outbreaks are not uncommon, and ingestion of shellfish cultivated in polluted water is associated with a high risk of infection.
Approximately 40% of all acute viral hepatitis is caused by HAV.
Infected individuals are infectious prior to onset of symptoms, roughly 10 days following infection.
The virus is resistant to detergent, acid (pH 1), solvents (e.g., ether, chloroform), drying, and temperatures up to 60oC. It can survive for months in fresh and salt water.
Common-source (e.g., water, restaurant) outbreaks are typical.
Infection is common in children in developing countries, reaching 100% incidence, but following infection there is life-long immunity.
HAV can be inactivated by: chlorine treatment (drinking water), formalin (0.35%, 37oC, 72 hours), peracetic acid (2%, 4 hours), beta-propiolactone (0.25%, 1 hour), and UV radiation (2 μW/cm2/min).

Cases

The most widespread hepatitis A outbreak in the United States afflicted at least 640 people (killing four) in north-eastern Ohio and south-western Pennsylvania in late 2003.
The outbreak was blamed on tainted green onions at a restaurant in Monaca, Pennsylvania. In 1988, 300,000 people in Shanghai, China were infected with HAV after eating clams from a contaminated river.[14]

Prevention

Hepatitis A can be prevented by vaccination, good hygiene and sanitation.[1][15] Hepatitis A is also one of the main reasons not to surf or go in the ocean after rains in coastal areas that are known to have bad runoff.
The vaccine protects against HAV in more than 95% of cases for 10 years. It contains inactivated Hepatitis A virus providing active immunity against a future infection.
The vaccine was first phased in 1996 for children in high-risk areas, and in 1999 it was spread to areas with elevating levels of infection.
The vaccine is given in two doses in the muscle of the upper arm.
The first dose provides protection two to four weeks after initial vaccination; the second booster dose, given six to twelve months later, provides protection for up to twenty years.

Symptoms

Early symptoms of hepatitis A infection can be mistaken for influenza, but some sufferers, especially children, exhibit no symptoms at all.
Symptoms typically appear 2 to 6 weeks, (the incubation period ), after the initial infection.
Symptoms can return over the following 6-9 months which include:

* Fatigue
* Fever
* Abdominal pain
* Nausea
* Diarrhea
* Appetite loss
* Depression
* Jaundice, a yellowing of the skin or whites of the eyes
* Sharp pains in the right-upper quadrant of the abdomen
* Weight loss
* Itching

Diagnosis

Serum IgG, IgM and ALT following Hepatitis A virus infection
Although HAV is excreted in the feces towards the end of the incubation period, specific diagnosis is made by the detection of HAV-specific IgM antibodies in the blood.
IgM antibody is only present in the blood following an acute hepatitis A infection.
It is detectable from one to two weeks after the initial infection and persists for up to 14 weeks.
The presence of IgG antibody in the blood means that the acute stage of the illness is past and the person is immune to further infection.
IgG antibody to HAV is also found in the blood following vaccination and tests for immunity to the virus are based on the detection of this antibody.
During the acute stage of the infection, the liver enzyme alanine transferase (ALT) is present in the blood at levels much higher than is normal.
The enzyme comes from the liver cells that have been damaged by the virus.
Hepatitis A virus is present in the blood, (viremia), and feces of infected people up to two weeks before clinical illness develops.

Prognosis

The United States Centers for Disease Control and Prevention (CDC) in 1991 reported a low mortality rate for hepatitis A of 4 deaths per 1000 cases for the general population but a higher rate of 17.5 per 1000, in those aged 50 and over.
Death usually occurs when the patient contracts Hepatitis A while already suffering from another form of Hepatitis, such as Hepatitis B or Hepatitis C or AIDS.
Young children who are infected with hepatitis A typically have a milder form of the disease, usually lasting from 1-3 weeks, whereas adults tend to experience a much more severe form of the disease.

Treatment

There is no specific treatment for hepatitis A.
Sufferers are advised to rest, avoid fatty foods and alcohol (these may be poorly tolerated for some additional months during the recovery phase and cause minor relapses), eat a well-balanced diet, and stay hydrated. Approximately 15% of people diagnosed with hepatitis A may experience one or more symptomatic relapse(s) for up to 24 months after contracting this disease.

HEPATITIS

Hepatitis

Hepatitis (plural hepatitides) implies injury to the liver characterized by the presence of inflammatory cells in the tissue of the organ. The name is from ancient Greek hepar (ἧπαρ), the root being hepat- (ἡπατ-), meaning liver, and suffix -itis, meaning "inflammation" (c. 1727)[1]. The condition can be self-limiting, healing on its own, or can progress to scarring of the liver. Hepatitis is acute when it lasts less than six months and chronic when it persists longer. A group of viruses known as the hepatitis viruses cause most cases of liver damage worldwide. Hepatitis can also be due to toxins (notably alcohol), other infections or from autoimmune process. It may run a subclinical course when the affected person may not feel ill. The patient becomes unwell and symptomatic when the disease impairs liver functions that include, among other things, removal of harmful substances, regulation of blood composition, and production of bile to help digestion.


Causes

Acute

* Viral hepatitis: Hepatitis A through E (more than 95% of viral cause), Herpes simplex, Cytomegalovirus, Epstein-Barr, yellow fever virus, adenoviruses.
* Non viral infection: toxoplasma, Leptospira, Q fever,[2] rocky mountain spotted fever[3]
* Alcohol
* Toxins: Amanita toxin in mushrooms, carbon tetrachloride, asafetida
* Drugs: Paracetamol, amoxycillin, antituberculosis medicines, minocycline and many others (see longer list below).
* Ischemic hepatitis (circulatory insufficiency)
* Pregnancy
* Auto immune conditions, e.g., Systemic Lupus Erythematosus (SLE)
* Metabolic diseases, e.g., Wilson's disease

Chronic

* Viral hepatitis: Hepatitis B with or without hepatitis D, hepatitis C (neither hepatitis A nor hepatitis E causes chronic hepatitis)
* Autoimmune: Autoimmune hepatitis
* Alcohol
* Drugs: methyldopa, nitrofurantoin, isoniazid, ketoconazole
* Non-alcoholic steatohepatitis
* Heredity: Wilson's disease, alpha 1-antitrypsin deficiency
* Primary biliary cirrhosis and primary sclerosing cholangitis occasionally mimic chronic hepatitis[4]

Symptoms

Acute

Clinically, the course of acute hepatitis varies widely from mild symptoms requiring no treatment to fulminant hepatic failure needing liver transplantation. Acute viral hepatitis is more likely to be asymptomatic in younger people. Symptomatic individuals may present after convalescent stage of 7 to 10 days, with the total illness lasting 2 to 6 weeks.[4]

Initial features are of nonspecific flu-like symptoms, common to almost all acute viral infections and may include malaise, muscle and joint aches, fever, nausea or vomiting, diarrhea, and headache. More specific symptoms, which can be present in acute hepatitis from any cause, are: profound loss of appetite, aversion to smoking among smokers, dark urine, yellowing of the eyes and skin (i.e., jaundice) and abdominal discomfort. Physical findings are usually minimal, apart from jaundice (33%) and tender hepatomegaly (10%). There can be occasional lymphadenopathy (5%) or splenomegaly (5%).[5]

Chronic

Majority of patients will remain asymptomatic or mildly symptomatic, abnormal blood tests being the only manifestation. Features may be related to the extent of liver damage or the cause of hepatitis. Many experience return of symptoms related to acute hepatitis. Jaundice can be a late feature and may indicate extensive damage. Other features include abdominal fullness from enlarged liver or spleen, low grade fever and fluid retention (ascites). Extensive damage and scarring of liver (i.e., cirrhosis) leads to weight loss, easy bruising and bleeding tendencies. Acne, abnormal menstruation, lung scarring, inflammation of the thyroid gland and kidneys may be present in women with autoimmune hepatitis.[6]

Findings on clinical examination are usually those of cirrhosis or are related to aetiology.

Types

Viral

Most cases of acute hepatitis are due to viral infections:
* Hepatitis A
* Hepatitis B
* Hepatitis C
* Hepatitis B with D
* Hepatitis E
* Hepatitis F virus (existence unknown)
* Hepatitis G, or GBV-C
* In addition to the hepatitis viruses (please note that the hepatitis viruses are not all related), other viruses can also cause hepatitis, including cytomegalovirus, Epstein-Barr virus, yellow fever, etc.

Other viral infections can cause hepatitis (inflammation of the liver):
* Mumps virus
* Rubella virus
* Cytomegalovirus
* Epstein-Barr virus
* Other herpes viruses

Alcoholic hepatitis

Ethanol, mostly in alcoholic beverages, is a significant cause of hepatitis. Usually alcoholic hepatitis comes after a period of increased alcohol consumption. Alcoholic hepatitis is characterized by a variable constellation of symptoms, which may include feeling unwell, enlargement of the liver, development of fluid in the abdomen ascites, and modest elevation of liver blood tests. Alcoholic hepatitis can vary from mild with only liver test elevation to severe liver inflammation with development of jaundice, prolonged prothrombin time, and liver failure. Severe cases are characterized by either obtundation (dulled consciousness) or the combination of elevated bilirubin levels and prolonged prothrombin time; the mortality rate in both categories is 50% within 30 days of onset.

Alcoholic hepatitis is distinct from cirrhosis caused by long term alcohol consumption. Alcoholic hepatitis can occur in patients with chronic alcoholic liver disease and alcoholic cirrhosis. Alcoholic hepatitis by itself does not lead to cirrhosis, but cirrhosis is more common in patients with long term alcohol consumption. Patients who drink alcohol to excess are also more often than others found to have hepatitis C.[citation needed] The combination of hepatitis C and alcohol consumption accelerates the development of cirrhosis.

Drug induced

A large number of drugs can cause hepatitis:[7]
* Allopurinol
* Amitriptyline (antidepressant)
* Amiodarone (antiarrhythmic)
* Atomoxetine [8]
* Azathioprine[9]
* Halothane (a specific type of anesthetic gas)
* Hormonal contraceptives
* Ibuprofen and indomethacin (NSAIDs)
* Isoniazid (INH), rifampicin, and pyrazinamide (tuberculosis-specific antibiotics)
* Ketoconazole (antifungal)
* Loratadine (antihistamine)
* Methotrexate (immune suppressant)
* Methyldopa (antihypertensive)
* Minocycline (tetracycline antibiotic)
* Nifedipine (antihypertensive)
* Nitrofurantoin (antibiotic)
* Paracetamol (acetaminophen in the United States) can cause hepatitis when taken in an overdose. The severity of liver damage may be limited by prompt administration of acetylcysteine.
* Phenytoin and valproic acid (antiepileptics)
* Troglitazone (antidiabetic, withdrawn in 2000 for causing hepatitis)
* Zidovudine (antiretroviral i.e., against HIV)
* Some herbs and nutritional supplements[10]

The clinical course of drug-induced hepatitis is quite variable, depending on the drug and the patient's tendency to react to the drug. For example, halothane hepatitis can range from mild to fatal as can INH-induced hepatitis. Hormonal contraception can cause structural changes in the liver. Amiodarone hepatitis can be untreatable since the long half life of the drug (up to 60 days) means that there is no effective way to stop exposure to the drug. Statins can cause elevations of liver function blood tests normally without indicating an underlying hepatitis. Lastly, human variability is such that any drug can be a cause of hepatitis.

Toxins

Other Toxins can cause hepatitis:
* Amatoxin-containing mushrooms, including the Death Cap (Amanita phalloides), the Destroying Angel (Amanita ocreata), and some species of Galerina. A portion of a single mushroom can be enough to be lethal (10 mg or less of α-amanitin).
* White phosphorus, an industrial toxin and war chemical.
* Carbon tetrachloride ("tetra", a dry cleaning agent), chloroform, and trichloroethylene, all chlorinated hydrocarbons, cause steatohepatitis (hepatitis with fatty liver).
* Cylindrospermopsin, a toxin from the cyanobacterium Cylindrospermopsis raciborskii and other cyanobacteria.

Metabolic disorders

Some metabolic disorders cause different forms of hepatitis. Hemochromatosis (due to iron accumulation) and Wilson's disease (copper accumulation) can cause liver inflammation and necrosis.

Non-alcoholic steatohepatitis (NASH) is effectively a consequence of metabolic syndrome.

Obstructive

"Obstructive jaundice" is the term used to describe jaundice due to obstruction of the bile duct (by gallstones or external obstruction by cancer). If longstanding, it leads to destruction and inflammation of liver tissue.

Autoimmune

Anomalous presentation of human leukocyte antigen (HLA) class II on the surface of hepatocytes, possibly due to genetic predisposition or acute liver infection; causes a cell-mediated immune response against the body's own liver, resulting in autoimmune hepatitis.

Alpha 1-antitrypsin deficiency

In severe cases of alpha 1-antitrypsin deficiency (A1AD), the accumulated protein in the endoplasmic reticulum causes liver cell damage and inflammation.

Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is the occurrence of fatty liver in people who have no history of alcohol use. It is most commonly associated with obesity (80% of all obese people have fatty liver). It is more common in women. Severe NAFLD leads to inflammation, a state referred to as non-alcoholic steatohepatitis (NASH), which on biopsy of the liver resembles alcoholic hepatitis (with fat droplets and inflammatory cells, but usually no Mallory bodies).

The diagnosis depends on medical history, physical exam, blood tests, radiological imaging and sometimes a liver biopsy. The initial evaluation to identify the presence of fatty infiltration of the liver is medical imaging, including such ultrasound, computed tomography (CT), or magnetic resonance (MRI). However, imaging cannot readily identify inflammation in the liver. Therefore, the differentiation between steatosis and NASH often requires a liver biopsy. It can also be difficult to distinguish NASH from alcoholic hepatitis when the patient has a history of alcohol consumption. Sometimes in such cases a trial of abstinence from alcohol along with follow-up blood tests and a repeated liver biopsy are required.

NASH is becoming recognized as the most important cause of liver disease second only to hepatitis C in numbers of patients going on to cirrhosis.[citation needed]

Ischemic hepatitis

Ischemic hepatitis is caused by decreased circulation to the liver cells. Usually this is due to decreased blood pressure (or shock), leading to the equivalent term "shock liver". Patients with ischemic hepatitis are usually very ill due to the underlying cause of shock. Rarely, ischemic hepatitis can be caused by local problems with the blood vessels that supply oxygen to the liver (such as thrombosis, or clotting of the hepatic artery which partially supplies blood to liver cells). Blood testing of a person with ischemic hepatitis will show very high levels of transaminase enzymes (AST and ALT), which may exceed 1000 U/L. The elevation in these blood tests is usually transient (lasting 7 to 10 days). It is rare that liver function will be affected by ischemic hepatitis.